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Bondingness, originally used in a qualitative analysis of the barrier to rotation in ethane, has been
used to model �fH◦ (g) for simple organic substances. The model is parameterised with a set of 345
molecules including alkanes, alkenes, alkynes, alcohols, ethers, aldehydes, ketones, carboxylic acids,
esters, alkenoates, amines, amides, diazenes, nitriles, nitroalkanes, nitrates, thiols and benzenoids. The
vailable online 3 June 2009
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model is compared with a current empirical scheme as well as a comparison of variations of the model
using different simple steric potentials. Using bondingness and the most approximate quantum chemical
models a model can be formulated that is comparable with empirical group methods but requiring less
parameters.

© 2009 Elsevier B.V. All rights reserved.

b initio
Os

. Introduction

The enthalpy of formation �fH◦ can be calculated with the fol-
owing methods: empirically by an additivity scheme, where this
s most successfully done with a group method; semiempirically
y a molecular mechanics method; by composite ab initio methods

ike Gn or Wn (n = 1, 2, 3 or 4) or by ab initio and density functional
heory (DFT) methods corrected with group equivalents.

.1. Empirical additivity schemes

In additivity schemes to a first approximation, the atomiza-
ion energy of a molecule is approximated as the sum of constant
ransferable bond energy terms between any two atoms A and B
E◦(A–B)]. The value of the bond energy is determined by the two
toms of the bond, and the order of the bond as specified in a valence
ond structure. This approximation works for the higher members
f a homologous series like the n-alkanes (C6 and above) but fails

or structural isomers and the lower members of the series. This
ndicates that the C–C bond energy [E(C–C)] varies according to the
roups attached. Put another way, the concept of a constant trans-
erable bond energy holds so long as the nearest neighbours remain
he same.

∗ Corresponding author. Tel.: +64 7 838 4027.
E-mail address: mcjl1@waikato.ac.nz (M.C.J. Lee).

040-6031/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2009.05.011
To account for the thermochemical differences between struc-
tural isomers, one needs to take into account the chemical
environment of the bond, and this is what the group methods do.
On the basis that the energy of a bond is constant as long as the near-
est neighbours are the same, a molecular fragment about a bond or
atom that includes all nearest neighbour atoms may be assigned a
group parameter. Whether parameters are designated to a molecu-
lar fragment or bonds distinguished by the chemical environment
of the neighbour atoms, the results are equivalent when the same
number of parameters are used. The three common group methods
by Laidler [1], Benson and Buss [2] and Allen [3] have been shown
to be equivalent by Cox and Pilcher [4]. Also some account must
be made for steric strain. This is usually done by multiplying the
number of gauche 1,4 interactions in the molecule by an appropri-
ate coefficient. The performance of a group method is as good as if
not superior to other methods, if parameters are derived from accu-
rate experimental data. A common difficulty encountered however,
is that a molecule may contain a molecular fragment for which a
group parameter cannot be derived from the available experimental
values.

Wodrich and Schleyer [5] have recently published a group
method with no parameters ascertained in a least squares way.
Instead the parameters are fixed by the values of representative
molecules. We note that a geminal H–H term is common to all the

Gronert [6], Wodrich and Schleyer [5] and Smith [7] schemes with
the corollary the latter two are equivalent. Smith determined the
geminal H–H term by the method of squares. Subsequently Rogers
and co-workers have proposed another scheme that minimises the
number of group parameters [8].

http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:mcjl1@waikato.ac.nz
dx.doi.org/10.1016/j.tca.2009.05.011
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.2. Ab initio methods

If no data exist for any species similar to a molecule under
xamination, a high level correlated ab initio calculation can be
erformed at a high cost in computer time. However this is only
ossible for very small molecules, with no more than 10 first row
toms. To reduce computer time for larger molecules, approxima-
ions of severity commensurate with molecular size must be made
nd parameters sought to compensate for the approximations made
y the chosen model’s reduced ability to calculate the full elec-
ron correlation energy and the reduced basis set size (basis set
runcation error). Composite methods automatically extrapolate
orrection terms by varying the basis set and choosing higher and
ower levels of theory to approximate corrections for such things
s basis set truncation error. Composite methods minimize com-
utational cost by using the lowest level adequate at each step in
he procedure, to reproduce experimental data within or close to
he limits of the experimental error of a test set of molecules. These

ethods are usually tested over a chemically diverse test set of
mall compounds. DFT methods calculate electron correlation at
significantly reduced cost. DFT local density models are known

o overestimate bond dissociation energies, while HF is known to
nderestimate these. DFT methods are believed to perform quite
ell [9–11], but when tested on large test sets with larger molecules

eem to perform less adequately than is commonly believed [12,13].
ond [13] has tested the composite methods over a test set of larger
ompounds that more typically represent molecules in organic
hemistry as well as testing the popular B3LYP density functional
odel which was found to perform unacceptably with the limits

efined in his work.
G4 and W4 are the latest in the series, Gn and Wn (n = 1, 2, 3, 4)

14–18] of composite procedures where in G4 parameters have been
xtended for the first, second and third row compounds. Only the
rst and second rows were examined in the procedures prior to G4.
ecently Schwabe and Grimme [19] have proposed double hybrid
ensity functionals as well as modified post-HF methods without
alculation of vibrational data to calculate reaction energies for
arger molecules.

.3. Molecular mechanics

Molecular mechanics (MM) use empirical functions related to
olecular geometry. The functions used by a MM method are the
ethod’s force field.

A force field specifies, among other things, potential energy.
hen the potential energy is related to nuclear positions of the
olecule, a potential energy surface (PES) can be defined. The PES

s a multidimensional nonlinear function of the molecular nuclear
ositions. A molecular geometry ascertained at a minimum on the
ES is then considered geometry optimized. The sum of the poten-
ial energy functions at the resultant molecular geometry gives a
teric energy (SE). The SE is parameterised with bond increments
o calculate �fH◦ values.

.4. Semiempirical quantum mechanics

For large chemical systems as encountered in organic chemistry
nd biochemistry and pharmaceutical research, the semiempirical
eglect of diatomic differential overlap methods (NDDO) provide
n alternative to molecular mechanics. These methods have a
inimum basis set that ignores core electrons with the common
pproximation that atomic orbitals on neighbouring atoms do not
verlap. NDDO methods are parameterised to experimental data
o reproduce equilibrium geometries, heats of formation, dipole

oments and ionization potentials. The common methods are
ustin model 1 (AM1 [20]), modified neglect of differential over-
ica Acta 495 (2009) 14–21 15

lap (MNDO [21] and MNDO/d [22]) and parametric method 3 (PM3
[23]). PM3 has been updated by PM6 [24]. Jorgensen et al. have
included extra terms in the core repulsion formula to apply a pair-
wise distance directed Gaussian function (PDDG) between bonded
atoms [25–27]. AM1 has been reparameterised to a training set of
1736 molecules and is now called RM1 [28]. RM1 is easily imple-
mented in programs that already have AM1 as no line of code needs
to be changed except for the values of the parameters. Because
NDDO methods are parameterised from experimental data they
calculate �fH◦ directly without calculating �H(T). However NDDO
�fH◦ values are not accurate enough to correctly order the stability
of structural isomers. Jorgensen and co-workers [29] have recently
compared semiempirical MO methods.

1.5. Systematic corrections

The semiempirical methods and ab initio methods can be
improved with the use of atom, bond or group equivalents meth-
ods. In the simplest of these only atom equivalents are ascertained.
Wiberg [30,31] and subsequently Ibrahim and Schleyer [32] inde-
pendently ascertained group equivalents for HF methods.

Allinger et al. included two more terms TOR and POP [33–39].
TOR is a correction for low lying torsional vibrations not accounted
for in the harmonic approximation of vibrational frequency calcula-
tions and is approximated by a coefficient with the number of single
bonds in a molecule about which there is free rotation, excluding
methyl groups. POP is a correction for excess energy in �fH◦ due to
population of higher energy conformers.

Herndon [40] ascertained atom equivalents by least squares
estimates for the total energy (�ETot) and number of carbon and
hydrogen atoms over a group of 65 saturated and unsaturated, as
well as, strained hydrocarbons for the HF model. Liu and Chen [41]
retrained the Herndon test group for DFT and MP2 single point
energy calculations with large basis sets geometry optimized and
thermally corrected with a smaller basis set. This was done with
similar regression analysis as Herndon, but included a regression
constant.

Habibollahzadeh et al. [42] ascertained valency dependent atom
equivalents for DFT when �ETot is corrected with �H(T) calculated
and geometry optimized with the 6-31G(d,p) basis set.

Mole et al. [43] ascertained atom equivalents for six DFT models
using a test group of 23 molecules and showed B3LYP to perform
best.

Repasky et al. [44] used a training set of 329 molecules and a
test set of 583 molecules including the training set, to ascertain 61
group equivalents including TOR for AM1, MNDO and PM3. AM1
and PM3 performed about equally well with PM3 having a slightly
better mean absolute error.

Winget and Clark [12] have tested the B3LYP density functional
method with atom equivalents over 845 compounds.

Delley [45] has compared 25 electronic structure models over
test groups ranging from a subset of 234 molecules for MP2, to
the complete set of 592 molecules and atoms for a number of DFT
models.

1.6. Bondingness

In our previous article we used a single parameter to describe
the variation in C–C bond energies [E(C–C)] to account for the
variation in molecular structure among the structural isomers of
alkanes [46]. We termed this �-antibondingness [B*(�)] which

Smith [47,48] considered might be a consequence of the anti-
bonding effect within the occupied MOs of a molecule. Here we
define �-bondingness [B(�)] to be the negative of B*(�) such that
B*(�) = −B(�); likewise for �-bondingness B*(�) = −B(�). By ascer-
taining parameters for B(�) in different chemical environments we
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In this work a trial and error approach is adopted to ascertain the
significance of an algorithm used to calculate B(�) values.

The group methods are perhaps a little passé on the frontiers of
theoretical chemistry. However they, as well as the group equiva-
6 M.C.J. Lee, D.W. Smith / Therm

ave extended our method to include a more diverse set of simple
rganic molecules.

The basis for using bondingness originated from a qualitative
nvestigation of the antibonding effect and its usefulness as a qual-
tative explanation for the barrier to rotation in ethane [47,49]. The
ntibonding effect is that the destabilization of the antibonding MO
�2) is always greater than the stabilization of the bonding MO (�1)
elative to the energies of the AOs (�1 and �2) combined to form
he MOs.

If MOs for ethane are constructed from MOs from methyl radicals
ith geometry combined to form ethane, three MOs of a1 sym-
etry and two pairs of degenerate e symmetry MOs are obtained.

he barrier to rotation is attributed to overlap repulsion between
–H bonds and the C–H bonding predominantly occurs in the e
Os. The antibonding effect in the occupied 1e′ and 1e′′ MOs of

clipsed ethane is greater than in the 1eu and 1eg MOs of staggered
thane. This is a significant � antibonding effect in the highest occu-
ied molecular orbitals (HOMOs) eg and e′′ in the staggered and
clipsed conformations, respectively. The idea that overlap repul-
ion between vicinal C–H bonds should be accounted for in an
dditivity scheme was suggested by Smith [48] in 1999 and sub-
equent schemes were developed in 2001 [50] and 2005 [46].

A B(�) value can be calculated from the AO coefficients in a MO
etween two atoms by adding the B(�) term to the dot product
f the p AO coefficients on each atom. The B(�) is an orthogonal
ransformation of the AO coefficients. The transformation being the
rojection of the p AOs along the abstract vector between the atoms.
he projection formula can be employed to ascertain the � compo-
ent of the p orbitals on each atom where the sign of the abstract
ector between the atoms (r) is reversed for each atom, where c
s a vector of p AO coefficients for the ith and jth atoms as shown
n Eq. (1). A positive value by Eq. (1) corresponds to a bonding �
nteraction, while a negative value is an antibonding � interaction.
rom a B(�) value a B(�) value is then calculated by Eq. (2).

(�) = r
|r|

· ci × −r
|r|

· cj (1)

(�) = ci · cj + B(�) (2)

he final B(�) value for the molecule was ascertained by first sum-
ing B(�) values in occupied MOs only between bonded carbon

toms with the AO coefficients of a particular MO, to get a B(�) value
or each MO for carbon-carbon bonding. The B(�) in each MO is
rdered according to its corresponding MO from highest to lowest.
ontiguous negative values are added to give B(�) for the molecule,
nless a single negative value having zero or positive B(�) for the
Os about it, is less (more negative) than a sum of contiguously

egative values. In this case, the more negative value is used.

.7. Notation for algorithms in B(�)

Bondingness (B), in particular �-bondingness [B(�)] is calcu-
ated over occupied MOs only.

Previously [46] B(�) was summed across all C–C bonds in a
O to give a value for that MO. Contiguously negative MOs were

hen added together to give B(�) for the molecule. This idea is
odified in the A1.0 algorithm according to the chemical envi-

onments determined by a bond labelling algorithm which gathers
nformation from adjacent bonds. The bonds of similar chemical
nvironments are grouped and B(�) is determined for each type of
hemical environment. Consider 1-butene: double bonds are sep-

rated from single bonds so that B(�) is summed between C2 and
3, and C3 and C4 for each occupied MO and contiguously nega-
ive values are added to give a specific B(�) for C–C bonds. This is
one again between C1 and C2 to give a specific B(�) for the dou-
le bond, which is negligibly negative or zero. The molecule can
ica Acta 495 (2009) 14–21

also be grouped into double bonds, single bonds and single bonds
next to double bonds. The A1.1 algorithm is exactly the same as the
A1.0 algorithm between atoms with bond orders less than some
predefined value (normally 1.5, 2 or 3). If the bond order matches
or exceeds the predefined value, then the algorithm continues in
a similar manner to A1.0 with the single difference contiguously
positive B(�) values ascertained for the MOs are added together.

Parameters are ascertained by a least squares estimate (LSE) k
for each specific B(�), the product of k and B(�) giving an adjusted
specific B(�) [B(�)adj].

The A2.0 and A2.1 algorithms differ by not grouping the bonds.
Instead a B(�) value is determined for each bond by the A1.0 algo-
rithm for A2.0 and by the A1.1 algorithm for A2.1. Then the bonds are
grouped according to chemical environment and the values from
the bonds of common chemical environments are added to give
the specific B(�) for each chemical environment.

The final algorithms tested were the A3.0 and A3.1 algorithms
which sum all negative B(�) across all bonds and in each occupied
MO of common chemical environment. Where the A3.1 algorithm
differs by summing the positive B(�) for bonds with bond order
above or matching the defined value.

1.8. Notation in chemical environment

A further syntax was developed for computer programs to
distinguish different chemical environments. This describes the
chemical environment of a bond. The algorithm employed cre-
ates a label beginning with the two atoms of the bond followed
by an underscore and the bond order of the bond,1 the adjacent
bonds are then similarly labelled and placed in brackets followed
by the number of that kind of bond adjacent to the bond in the first
part of the label. C–H bonds are usually ignored. Thus the sp2sp3

bond of 3-methylbut-1-ene, ignoring C–H bonds, would be labelled
CC 1(CC 1)2(CC 2)1. Ignoring C–C bonds this becomes CC 1(CC 2)1.
Ignoring C–C and C–H bonds prevents us from distinguishing ter-
minal methyl, secondary, tertiary and quaternary bonding. This
is intentional as we anticipate the variation in specific B(�) to
accommodate these differences and reduces clutter in the chemical
environment notation.

In a few instances when there are chemical environments
with small B(�) or environments are unique to one molecule
only or an environment is collinear, we combine the environ-
ment notation with another similar chemical environment. For
instance CC 1(CN 1)2 is an environment unique in the test set to
1,1-dinitropropane. This was combined with CC 1(CN 1)1 environ-
ments to give CC 1(CN 1)1-2.

By the different combinations of the notation for a specific B(�) it
is evident there are many ways to quantify B(�). However in alkanes
there is little distinction between the different chemical environ-
ments of each C–C bond. There is perhaps more �-antibonding in
terminal C–C bonds, but the different ways of ascertaining B(�) give
similar results. However for molecules with heteroatoms or with
bond orders greater than one, specific B(�) values can vary a great
deal according to the method implied by the variations in notation.
1 The number is actually a bond descriptor of type integer assigned in a quantum
chemical input file where for the most part it represents the approximate bond order
of the bond, except in the case where the bond order is 1.5, as is the case for benzenoid
or nitro compounds. In this instance the integer 5 is used and we keep this notation
in this work. Therefore the carbon-carbon bond in a benzene ring has the notation
CC 5(CC 5)2.
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Table 1
Bond energies obtained directly from CH4, diamond, H2O,
NH3 and H2S.

Bond energy (kJ mol−1)

E(C–H) 415.87
E(C–C) 357.40
E(O–H) 463.50
M.C.J. Lee, D.W. Smith / Therm

ents used to correct ab initio or DFT total energies, do exhibit the
arameters used in their methodology in a more accessible way
han semiempirical and composite methods. The results of Ped-
ey’s [51] method and experimental values are organized according
o the functional groups of the molecules and we have chosen his
xperimental values (with a few exceptions) and consequently his
ethod to compare ours with. In extending our method we have

ept in mind the question: what minimum number of parameters
or specific B(�) and steric terms are required for a model that cal-
ulates �fH◦ values, with errors comparable with current group
ethods, viz. Pedley’s method?

. Method

With any model’s calculated �fH◦ values, results are most accu-
ate when parameters are ascertained over a homologous series of
losely related molecules for which experimental values are known,
confident theoretical value can then be calculated for other mem-
ers of the homologous series for which there is no experimental
alue. One would have very little confidence in a value calculated
or a non-member of the homologous series. To make a more robust

odel, that might be able to determine more accurate calculated
alues for a greater diversity of chemical structures, a test group of
45 molecules (see supporting information) has been investigated
o parameterise against �fH◦ values. To compare with Pedley’s
cheme we used the experimental �fH◦ (g) values of his work [51],
e also test against the �fH◦ (g) available from the NIST chemi-

al webbook [52]. Recently more data have been ascertained for
lkenoates by Emel’yanenko et al. [53].

Pedley’s �fH◦ values for alkenes are ascertained from enthalpies
f vaporization and combustion and an enthalpy of reaction for 1-
exene from Wiberg and Wasserman [54]. A subsequent paper by
iberg et al. [55] not used by Pedley suggests improved accuracies

n �fH◦ values particularly for cis-pent-2-ene and cis-hex-3-ene.
iberg has reviewed these methods [56]. Enthalpies of reaction

scertained by Rogers et al. [57–61] are also not used by Pedley.2

We anticipated developing a model that might eventually be
uitable for calculating �fH◦ (g) for amino acids and peptides, and
o molecules that exhibited functional groups common in amino
cids were chosen, where there were at least a few �fH◦ (g) val-
es in a group according to the grouping in Pedley’s work. If the
45 molecules are grouped in the same way as Pedley, then 18
ub-groups of the 345 molecules test can be distinguished. The
8 groups that the molecules of the test group belong to are:
lkanes, alkenes, alkynes, alcohols, ethers, aldehydes, ketones, car-
oxylic acids, esters, alkenoates, amines, amides, diazenes, nitriles,
itroalkanes, nitrates, thiols and benzenoids. Of the 345 molecules
ight extra molecules not available in Pedley’s compilation were
lso included. The following �fH◦ values and alternative reference
ources were used: the JANAF tables [62], 3-tert-butyl-2,2,4,4-
etramethyl-3-pentanol, hydrogen cyanide, ethenetricarbonitrile
nd ethenetetracarbonitrile; Benson and Garland [63], pent-1-
ne, pent-2-yne, 3-methylbut-1-yne and 3,3-dimethylbut-1-yne.
ver the test set of 345 molecules, excepting the latter list, using
round 107 parameters, Pedley’s method has a standard deviation
f 7 kJ mol−1. This was our benchmark. A program was written to
scertain all the molecular fragments required for a group method
ike Pedley’s. The number of molecular fragments based on a bond

nd its next nearest neighbours for the test set of 345 molecules
as 236, for which Pedley only supplies values for about 107.

Parameters are ascertained for an additivity scheme in the fol-
owing way. Some bond energies can be fixed from the atomization

2 J.F. Liebman, Examiner’s report, 2008.
E(N–H) 390.86
E(S–H) 366.74

enthalpies of methane, diamond [7], water, ammonia and hydro-
gen sulphide obtained from the JANAF tables [62] to give the values
shown in Table 1.

Results are slightly improved however if LSEs are ascertained
for E(C–C), E(O–H) and E(N–H) which we have done in the current
model. The remaining bond energies are ascertained by the least
squares method, along with other LSEs for B(�) and a steric func-
tion. Bond energies are ascertained for bonds according to the two
atoms involved in the bond only. For these parameters we are not
concerned about the neighbour atoms which are used to distin-
guish a group in a group method. However B(�) parameters are
ascertained for bonds in different chemical environments.

Some functional groups have a non-spherical arrangement of
hydrogen atoms about a heavy atom, for instance amino and
hydroxyl groups. These groups have different interactions with
neighbouring groups or atoms, depending on which direction the
hydrogens are oriented relative to the other group or atom. The
phenomenon where the spatial direction of something has a bear-
ing on an outcome is anisotropy. Anisotropy in a functional group
is usually accounted for by creating a pseudo atom to represent the
lone pair of electrons usually present in such a functional group. The
anisotropic problem may to some degree be accounted for by bond-
ingness between nonbonded atoms in a molecule. Urey–Bradley
forces [64] are between nearest neighbour atoms i.e. atoms not
bonded to each other, but bonded to a common atom. B(�) is direc-
tional, as is B(�) when p or higher l quantum number atomic orbitals
are involved. Nonbonded B(�) [nb-B(�)] is only distinguished by
the two atoms involved, and no further chemical environment
information. It therefore does not accrue parameters as quickly as
the algorithm for bonded B(�) values. Over the test group of 345
molecules the algorithm distinguishes the following nb-B(�): CC,
CN, CO, CS, NN, NO and OO. An nb-B(�) value is arrived at by sum-
ming all B(�) over all MOs for common interaction types. This much
simpler algorithm works just as well if not better than an algorithm
that sums contiguous negative B(�) for each MO.

An electrostatic energy term (Vstat.), which was beneficial for
molecule groups like alcohols, was also parameterised. In Eq. (3)
Vstat. is the electrostatic energy, C is a LSE, rij is the interatomic
distance between atoms i and j and qi and qj are the said atoms
respective charges.

Vstat. = C
∑ qiqj

rij
(3)

To account for steric repulsion in a molecule (Sij) two simple func-
tions were tested. A purely destabilizing steric parameter would
neglect the dispersive term of a formula modelling the van der
Waals potential. Thus in Eq. (4) n was varied to find the best fit,
rij was the distance between nonbonded H atoms and A and n were
ascertained by a nonlinear least squares grid search for n = 6 or 12.
We call this simple steric repulsion (SSR).
Sij = A
∑ 1

rn
ij

(4)
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his can be rearranged to take the form of the repulsive term of a
ennard–Jones potential. If r* = A1/n then Eq. (4) has the form:

ij =
∑(

r∗
rij

)n

(5)

f the Lennard–Jones potential is written:

vdW = nε

n − m

[
m

n

(
ro

r

)n

−
(

ro

r

)m
]

(6)

here ε is the well depth, ro is interaction distance minimizing
vdW, m and n are integers where m < n and are the hardness param-
ters for the attractive and repulsive terms, respectively and r is the
nteratomic distance. We parameterise VvdW with the form shown
n Eq. (7).

ij =
∑

r

Ar−n − Br−m (7)

he A and B variables of Eq. (7) can be converted to ε and ro of Eq.
6) by use of Eq. (8)

o =
(

nA

mB

)1/n−m

(8)

ubstituting ro for r into Eq. (7) gives ε.
We also tested Halgren’s [65,66] buffered 14 7 potential, which

as not competitive with SSR or the Lennard–Jones potentials
nless modified so that the nonbonded interactions with carbon
ere ignored.

Nonbonded interactions are ascertained between H, N and O,
here we distinguish, O attached to one or two atoms as type O7

nd O6, respectively and N attached to one, two or three atoms
s types N61, N9 and N8, respectively. Hydrogen atoms were either
ype 6 attached to carbon or type 21 attached to something else. This
ave 15 steric interaction types over the test set of 345 molecules.
he numbers distinguishing the atom types are roughly modelled
n the types of atom environments Halgren distinguishes for the
uffered 14 7 potential.

All the nonbonded distances are grouped according to the nota-
ion of the respective steric interaction and used to sum the terms
n Eqs. (4) or (7) and LSEs are obtained for each term. By this

ethod common steric interaction types are more heavily weighted
t longer distances. With regard to the Lennard–Jones potential
here is a paucity of data at closer distances near the ro region or
loser. Thus the sign of the LSE does not in all cases conform with the
ign of the respective term in the function so that some functions are
negative of the normal function and have a maximum at ro or the

wo terms combine so there is no maximum or minimum and are

symptotic like. It is important in a molecular mechanics model that
he potential have a minimum at ro because the nonbonded inter-
ctions in the force field are a major component in the construction
f the PES and improper functions would result in molecules flying
o pieces or collapsing in on themselves. In this work this outcome

able 2
he minimum nonbonded distance found for each steric interaction in a molecule in the t
teep and SS is very steep. Minus means the function is decreasing, while a plus means th
s a typical Lennard–Jones function and is not remarkable.

H21-H6 H6-H6 H6-N61 H6-N8 H

onbonded distance (Å) 2.2 1.8 3 2.5 2
umber of interactions in test set 1048 21567 185 352 1
-21G(*) A1-2-3 +S −S −S

A3.1 −S −S
TO-3G A1-2-3 −G −S −G

A3.1 −G −SS
M3 A1-2-3 +G −G −S −S

A3.1 −G −G
ica Acta 495 (2009) 14–21

is regrettable but the author thinks we can live with the outcome
as long as we realize when calculating �fH◦ values for molecules
outside the test set we must be aware of some functions approach-
ing minus infinity as inter atomic distance approaches zero. For
these types of nonbonded interactions the model is limited in these
instances to nonbonded distances no shorter than those encoun-
tered in the test set. The function is otherwise optimized at longer
distances for the currently available data. The shortest distances
encountered in the test set are given in Table 2, along with an indi-
cation of the gradient of those functions approaching minus infinity
as interatomic distance approaches zero. These functions are indi-
cated with an S, SS or G. Where an S indicates the function is steep
or is about to become steep and shorter nonbonded distances will
likely be erroneous. If the function is already steep for a few data in
the test set then the gradient is indicated with an SS. A G indicates a
more gradual potential change and the function may still be useful
at slightly shorter distances. Data for all the algorithms are given in
supporting information.

PM3 is the most approximate quantum chemical model we
used. A model can be developed from its output in the follow-
ing way. The test set of 345 molecules was geometry optimized
and MO Eigen vectors and zero point energy (ZPE) determined
at the PM3 level using the Spartan© [67] software package. With
these calculations the following terms to be parameterised were
determined: B(�) over bonds and over nonbonded 1,3 interactions
[nb-B(�)], electrostatic energy, steric energy using Eq. (7), a low
lying torsional vibrational energy term (TOR) and bond energy
terms.

The ZPEs were scaled by a factor of 0.9761 for PM3 and 0.9207
for HF/3-21G(*) [68,69]. A factor of 0.8217 for the STO-3G basis set
was ascertained by fitting STO-3G ZPEs to 3-21G ZPEs. The LSEs
were determined using a weighted least squares linear regression.
The function for the weighting was the inverse square of the exper-
imental error given in the literature for a molecule’s �fH◦. These
parameters were ascertained for each algorithm A1.0, A1.1, A2.0,
A2.1, A3.0 and A3.1 and the standard deviations in kJ mol−1 over
the 345 test set (S345) for the respective algorithms were 7.8, 8.2,
8.6, 8.4, 7.1 and 7.1. The t-statistics were then examined and a com-
posite of algorithms (A1-2-3) was constructed so that for each B(�)
parameter, the algorithm with the highest t-observed value was
assigned to calculate B(�) in that chemical environment. The A1-
2-3 algorithm then gave a standard deviation of 7.9 kJ mol−1. With
this procedure a total of 79 parameters are obtained by linear least
squares regression analysis.

Changing only the quantum chemical model and ascertaining
ZPEs and geometry optimizing the test set of molecules at the
respective level of model and basis set, parameters were sought

at the HF/STO-3G and HF/3-21G(*) levels.

The test set for HF/3-21G(*) is for 344 molecules and excludes
1-hexadecanol. Calculation of fundamental frequencies and ZPE at
this level on this molecule exceeds the memory limitations in a
typical 32 bit computer.

est set and the appearance of the function at that distance, where G is gradual, S is
e function increases as nonbonded distance decreases. Space indicates the function

6-N9 H21-O7 H6-O6 H6-O7 N61-N61 N8-O7 O7-O7

.3 2.3 2.3 2.2 3.6 2.6 2.6
37 32 1256 1431 21 44 48

−G +G
−S +S
−SS −SS −G

+G −S −SS −S
−G −S +G

−S +S
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Table 3
Experimental – calculated �fH◦ (��fH◦) values for the small molecule test set. Values are in kJ mol−1.

Experimental error PM3 STO-3G 3-21G(*)

��fH◦ A1-2-3 ��fH◦ A3.1 ��fH◦ A1-2-3 ��fH◦ A3.1 ��fH◦ A1-2-3 ��fH◦ A3.1

Methane 0.4 0.5 1.4 1.3 0.8 0.8 1.1
Ethane 0.3 3.1 4.5 2.7 2.9 3.0 3.2
Propane 0.5 3.8 5.9 4.7 4.8 3.2 4.2
Butane 0.6 3.0 1.3 0.5 0.6 3.0 0.6
Ethene 0.3 1.7 0.6 0.3 0.5 0.6 0.4
Ethyne 0.7 −0.4 0.1 0.3 0.4 0.4 0.5
Methanol 0.2 0.2 −0.3 0.6 0.4 0.8 1.1
Dimethyl ether 0.5 0.9 1.8 1.0 0.3 0.5 0.1
Formaldehyde 0.5 2.3 2.3 2.1 2.1 2.2 3.3
Propanone 0.7 1.9 −0.7 0.8 0.0 1.4 −1.4
Formic acid 0.5 0.2 0.1 0.2 −0.1 −0.3 −0.1
Methyl methanoate 0.7 −1.0 0.9 1.6 0.3 0.0 −0.6
Methyl 2-propenoate 0.8 −12.4 −4.8 −7.4 −9.8 −6.6 −7.0
Methylamine 1.0 −1.5 1.9 −0.4 1.6 0.5 1.2
Methanamide 2.0 2.1 3.8 0.0 1.4 −1.8 −2.9
Trans-butylmethyldiazene 2.1 2.0 0.9 0.2 5.2 0.0 0.1
Hydrogen cyanide 8.4 −15.9 −9.5 −27.2 −27.6 −38.4 −24.0
Nitromethane 0.6 −0.1 0.0 −0.5 −0.9 0.0 −0.6
Methyl nitrate 4.3 −1.4 2.6 −1.0 −5.5 2.0 0.9
Methanethiol 0.6 1.0 0.1 0.7 0.7 0.4 0.3
Benzene 0.7 0.1 0.1 −0.5 −0.4 0.0 −0.5
S21a 4.8 3.2 6.5 6.9 8.9 5.8
S 1

ed.

a
t
t
N
A
v
h
A

c
e

T
C

M
E
P
B
E
E
M
D
F
P
F
M
M
M
M
T
H
N
M
M
B
S
S

345b 7.9 7.

a Standard deviation for the 21 molecules in the small molecule test set.
b Standard deviation for the 345 molecules over which parameters were ascertain

In the composite of algorithms the prescription of assigning the
lgorithm with the largest t-observed value, for calculating B(�) in
he various chemical environments was not strictly followed, and
his was the case with CN 3 B(�) for STO-3G and 3-21G(*) and with
N 2 for PM3. These had the largest t-observed value with A1.0 or
2.0, but all A1.0, A2.0 and A3.0 algorithms give a negligible B(�)
alue and an LSE of the order of 104 to 108. In this instance the next
ighest sensible t-observed value was used to select either A1.1,

2.1 or A3.1.

It must be stressed that in most models methane has a spe-
ific parameter, or is left out of the test set and some test sets also
xclude ethane. The 345 test set includes all the smallest molecules

able 4
omparison of SSR, the Lennard–Jones and buffered 14 7 potentials. All B(�) values are as

Experimental error SSR

��fH◦ A1-2-3 ��fH◦ A

ethane 0.3 1.5 1.1
thane 0.4 3.2 3.1
ropane 0.5 4.7 3.3
utane 0.7 0.2 3.2
thene 0.5 1.0 2.3
thyne 0.8 0.5 0.1
ethanol 10.0 4.0 2.7
imethyl ether 0.5 1.5 2.4
ormaldehyde 0.5 2.3 2.6
ropanone 0.6 0.9 −1.5
ormic acid 0.6 −0.5 −1.7
ethyl methanoate 12.0 26.0 15.3
ethyl 2-propenoate 0.8 −5.7 −6.9
ethylamine 1.0 2.9 0.7
ethanamide 7.0 18.7 −3.8

rans-butylmethyldiazene 2.2 −0.2 0.0
ydrogen cyanide 8.4 −0.9 −4.2
itromethane 7.0 −13.0 0.2
ethyl nitrate 1.0 −0.2 0.0
ethanethiol 0.6 −0.3 −0.1

enzene 0.5 0.0 −0.4
21a 8.1 4.3
344b 8.3 9.2

a Standard deviation for the 21 molecules in the small molecule test set.
b Standard deviation for the 344 molecules over which parameters were ascertained.
6.1 6.2 6.6 6.1

in each sub-group of molecules. It is with these molecules (the
small molecule test set) that we want to monitor and check the
performance of each model. Of particular importance to us are the
values calculated by the model for methane, ethane, propane and
butane. These molecules are shown in Table 3 along with experi-
mental �fH◦ – calculated �fH◦ (��fH◦) and the standard deviation
for the small molecule test set (S21) as well as S345. Data for the
remaining algorithms is supplied in supporting information. The

S21 values are dominated by the largest experimental and calcu-
lated disparities. For Pedley’s experimental values of Table 3, S21
values are dominated by the hydrogen cyanide and to a lesser extent
methyl 2-propenoate ��fH◦ values.

certained at the HF/3-21G(*) level. Values are in kJ mol−1.

Lennard–Jones Buffered 14 7

1.1 ��fH◦ A1-2-3 ��fH◦ A1.1 ��fH◦ A1-2-3 ��fH◦ A1.1

1.1 1.1 1.5 1.4
2.9 2.7 2.5 0.8
3.3 3.1 3.0 1.5
3.1 2.8 2.7 1.4
0.5 1.8 2.1 2.4
0.6 0.0 0.5 0.7
2.3 2.7 12.6 9.2
2.1 2.1 3.8 1.9
1.2 2.1 2.6 5.7
0.5 −2.5 3.8 8.4

−0.6 −1.1 0.0 −0.9
22.0 11.4 34.4 15.6
−5.2 −6.6 −3.5 −6.6

1.7 2.5 2.4 2.1
−4.7 −5.3 14.1 9.6

0.0 0.0 −1.2 −1.0
−18.6 −36.3 −41.0 −42.0
−6.4 0.1 −6.8 14.3

0.1 0.1 −0.3 0.1
0.3 0.3 −1.1 −0.8
0.0 -0.7 1.3 1.9
7.0 8.9 12.9 11.3
8.2 11.0 9.8 10.9
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Heretofore the test set has been trained with Pedley’s experi-
ental values. This was done primarily to gauge our model with a

urrent empirical model and with weighted regression analysis the
wo models are comparable. Without weighting data in the regres-
ion analysis, standard deviations well below 6 kJ mol−1 are easily
ttained but at the expense of the smaller molecules.

To compare SSR, the Lennard–Jones and the buffered 14 7 poten-
ials over the 344 molecule test set, the most recent experimental
ata are taken from NIST if available, otherwise Pedley’s values
re still used. This data set is much more difficult to fit and stan-
ard deviations for the models are much higher. This is perhaps not
urprising as Pedley’s work presents a single recommended exper-
mental data per molecule chosen in part for the fit in the trend
f molecules with which it is grouped. And for this data those of
s not expert thermochemists are pleased to have someone choose

or us. Data comparing steric potentials using the A1-2-3 or A1.1
lgorithms is shown in Table 4. A comparison of all the algorithms
s given in supporting information.

. Conclusion

The use of B(�) in a quantitative model provides a means to cal-
ulate gaseous �fH◦ comparable with Pedley’s empirical scheme.
owever because B(�) can be used to vary the C–C bond energy
ithout extra structural parameters, adjacent C–H and C–C bonds

an be ignored and consequently the method does not require
s many parameters as a method that uses group equivalents.
he steric energy as well as B(�) calculations for a molecule also
rovide a mechanism that will distinguish conformers and even
otamers which group methods are incapable of doing. Both meth-
ds do not take into account the population of higher energy
onformers present in the gas phase. Population analysis would
ikely be the next step to improve the accuracy of the model.
he models that give the best treatment of alkanes use the mod-

fied buffered 14 7 potential and the A1.0 or A1.1 algorithms for
(�), but the large S344 shows the model is one of the worst,
long with the Lennard–Jones potential and the A1.1 algorithm,
ver the remaining molecules in the test set. A reasonable com-
romise is the A1-2-3 algorithm and the Lennard–Jones potential
hich gives reasonable estimates for the small alkanes as well

s having the best overall performance with the lowest S344
f 8.2 kJ mol−1. We recommend a model with an A1-2-3 algo-
ithm and Lennard–Jones potential which is most robust when
nique or collinear parameters are combined so that few or no
olecules have a zero ��fH◦. From experience the presence of

arameters unique to a molecule tends to give more negative
ennard–Jones potentials when using linear least squares regres-
ion and Eq. (7). Perl scripts to train a test set of molecules as
ell as calculate �fH◦ using the parameters from the training set

re available upon request from the corresponding author. The
cripts can assimilate output for molecules calculated with the
partan’04 or Gamess [70] (update 11-04-2008) quantum chemical
rograms.

ppendix A. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.tca.2009.05.011.
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